Answer:
The reasonable range for the population mean is (61%, 75%).
Explanation:
The interval estimate of a population parameter is an interval of values that consist of the values within which the true value of the parameter lies with a certain probability.
The mean of the sampling distribution of sample proportion is,
.
One of the best interval estimate of population proportion is the 95% confidence interval for proportion,
![CI=\hat p \pm z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/knt4jvxkgbbs52ysin43kft60az9e4am68.png)
Given:
n = 150
= 0.68
The critical value of z for 95% confidence level is:
![z_(\alpha/2)=z_(0.05/2)=z_(0.025)=1.96](https://img.qammunity.org/2021/formulas/mathematics/college/vam708pm2nut2uot2tvdk2houuliqjdhxy.png)
Compute the 95% confidence interval for proportion as follows:
![CI=\hat p \pm z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/knt4jvxkgbbs52ysin43kft60az9e4am68.png)
![=0.68\pm1.96\sqrt{(0.68(1-0.68))/(150)}\\\\=0.68\pm 0.0747\\\\=(0.6053, 0.7547)\\\\\approx (0.61, 0.75)](https://img.qammunity.org/2021/formulas/mathematics/college/frzo28arvnf0y8nlj2mf1ui6ox948vj6ly.png)
Thus, the reasonable range for the population mean is (61%, 75%).