Answer:
Explanation:
Given that
,
![\beta =220](https://img.qammunity.org/2021/formulas/mathematics/college/rbic6abzjn1m6qu2sfcfji8bx3pr5jmgcv.png)
The weibull distribution with parameters
![\alpha \ \ and \ \ \beta](https://img.qammunity.org/2021/formulas/mathematics/college/kjn045jeflcq07xlbtgebmanot4m5dqu1w.png)
where
![\alpha =0 \ \ , \beta =0](https://img.qammunity.org/2021/formulas/mathematics/college/q64p73t3a0ireadqmyjjpkuhtnj66908uw.png)
![F(x,\alpha ,\beta) \left|\begin{array}{cc}(\alpha )/(\beta ) x^{\alpha-1e^-(x/\beta)^\alpha &x\geq 0\\0&x<0\end{array}\right](https://img.qammunity.org/2021/formulas/mathematics/college/h0aoilyx56huntetkqsw3sxns1gaoesf44.png)
Then,
![F(x,\alpha ,\beta )=\left|\begin{array}{cc}0&x<0\\1-e^-^((x/\beta))^\alpha &x\geq 0\end{array}\right](https://img.qammunity.org/2021/formulas/mathematics/college/uvd98tt46vcqjmzndhodz81n6epeqkmcy4.png)
A) The probability that a specimen's lifetime is at most 250 is
![P(X\leq 250)=F(250,2.7,220)\\\\=1-e^-^(250/220)^(2.7)\\\\=1-0.2436\\\\=0.7564](https://img.qammunity.org/2021/formulas/mathematics/college/ppqgoly5m98z1mcsjgfbl1e6s007hzufh9.png)
The probability that the specimen's life time is more than 300 is
![P(X>300)=1-P(X\leq 300)\\\\=1-F(300;2.7,220)\\\\=1-(1-e^-^{(300/220)^(2.7)](https://img.qammunity.org/2021/formulas/mathematics/college/6uy14in6werrs13skh0cydc4dyutwo1n3e.png)
![=e^-^{(300/220)^(2.7)](https://img.qammunity.org/2021/formulas/mathematics/college/93h0nekd14w35slkxaa5v5gnogod8cs1ds.png)
= 0.0992
b)The probability of the specimen's lifetime is between 100 and 250
![P(100<X<250)=P(X<250)-P(X<100)\\\\=F(250;2.7,220)-F(100;2.7,220)\\\\=(1-e^-^((250/220)^2^.^7))-(1-e^-^((100/220)^2^.^7))\\\\=(1-0.2436)-1(1-0.8878)\\\\=0.6442](https://img.qammunity.org/2021/formulas/mathematics/college/jotxicdc1k5clytsgktm9xoetojbm2gjie.png)
c) The value such that exactly 50% of all specimens have lifetimes exceeding that value is
![P(X>x)=0.50\\\\1-P(X<x)=0.50\\\\1-(1-e^-^{(x/220)^(2.7)}=0.50\\\\e^-^{(x/220)^(2.7)}=0.50\\\\-(x/220)^(2.7)=In(0.50)\\\\(x/220)^(2.7)=-In(0.50)\\\\(x/220)=[-In(0.50)]^{((1)/(2.7))} \\\\x=220[-In(0.50)]^{((1)/(2.7))}](https://img.qammunity.org/2021/formulas/mathematics/college/gufq77nt11lhf366pwuecw5iw5sasy37ra.png)
x = 192.07