Answer:
a)
The probability that both will be hopelessly romantic is
P(X = 2) = 0.0361
b)
The probability that at least one person is hopelessly romantic is
P( X>1) = 0.3439
Explanation:
a)
Given data population proportion 'p' = 19% =0.19
q = 1-p = 1- 0.19 =0.81
Given two people are randomly selected
Given n = 2
Let 'X' be the random variable in binomial distribution

The probability that both will be hopelessly romantic is

P(X = 2) = 1 × 0.0361
The probability that both will be hopelessly romantic is
P(X = 2) = 0.0361
b)
The probability that at least one person is hopelessly romantic is
P( X>1) = 1-P(x<1)
= 1 - ( p(x =0)
=

= 1 - (0.81)²
= 1 -0.6561
= 0.3439
The probability that at least one person is hopelessly romantic is
P( X>1) = 0.3439