Answer:
m∠R = 112°, m∠S = 112°, m∠T = 68°
Explanation:
In a cyclic quadrilateral QRST,
m∠R + m∠T = 180° [Since opposite angles of a cyclic quadrilateral measure 180°]
(3x + 40)° + (5x - 52)° = 180°
8x - 12 = 180
8x = 180 + 12
8x = 192
x = 24
m∠R = (3x + 40) = 3×24 + 40
= 72 + 40
= 112°
m∠T = 180° - m∠R
= 180° - 112°
= 68°
Since m∠Q = 68°
m∠S = 180° - m∠Q
= 180° - 68°
= 112°
Therefore, m∠R = 112°, m∠S = 112°, m∠T = 68°