Answer:
(a)
![A(t)=1000-1000e^{-(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/q27s4cgw3gmit61p3ozpazx6fvvqj401xq.png)
(b)
![C(t)=2-2e^{-(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/fvn0oa8t0b36i4143p12nxif7di22m7aqv.png)
(c) C(5)=0.07842 lb/gal
(d)
![\lim_(t \to \infty) =2$ lb/gal](https://img.qammunity.org/2021/formulas/mathematics/college/e69ru0wc1jmt2zo8qpfkvoppeyqfsasmgm.png)
Explanation:
Amount of Salt in the Tank
![(dA)/(dt)=R_(in)-R_(out)](https://img.qammunity.org/2021/formulas/mathematics/college/djs0cvn00q5epp22yg6v2sbub8924moglm.png)
=(concentration of salt in inflow)(input rate of brine)
![=(2(lbs)/(gal))( 4(gal)/(min))=8(lbs)/(min)](https://img.qammunity.org/2021/formulas/mathematics/college/5trc3echj79d03o0yk6jg17aibyintpif3.png)
=(concentration of salt in outflow)(output rate of brine)
![=((A(t))/(500))( 4(gal)/(min))=(A)/(125)](https://img.qammunity.org/2021/formulas/mathematics/college/9mpdztbjxiw2lyzxn4omwo185025pzjgs9.png)
Therefore:
![(dA)/(dt)=8-(A)/(125)](https://img.qammunity.org/2021/formulas/mathematics/college/2xcey6clxvwyf76wou9ewhhzvywi0afnt8.png)
We then solve the resulting differential equation by separation of variables.
![(dA)/(dt)+(A)/(125)=8\\$The integrating factor: e^{\int (1)/(125)}dt =e^{(t)/(125)}\\$Multiplying by the integrating factor all through\\(dA)/(dt)e^{(t)/(125)}+(A)/(125)e^{(t)/(125)}=8e^{(t)/(125)}\\(Ae^{(t)/(125)})'=8e^{(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/nczss21w4lxklnveu6jgrjxmpeey5o3yjx.png)
Taking the integral of both sides
![\int(Ae^{(t)/(125)})'=\int 8e^{(t)/(125)} dt\\Ae^{(t)/(125)}=8*125e^{(t)/(125)}+C, $(C a constant of integration)\\Ae^{(t)/(125)}=1000e^{(t)/(125)}+C\\$Divide all through by e^{(t)/(125)}\\A(t)=1000+Ce^{-(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/tbn8euz6by8y5x2wmuer1kd9ryx7ybiawr.png)
Recall that when t=0, A(t)=0 (our initial condition)
![0=1000+Ce^(0)\\C=-1000\\$Therefore:\\](https://img.qammunity.org/2021/formulas/mathematics/college/zuyfr3uvgedi3dmhlxk8lwid61qs3acdoa.png)
![A(t)=1000-1000e^{-(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/q27s4cgw3gmit61p3ozpazx6fvvqj401xq.png)
(b)
Concentration c(t) of the salt in the tank at time t
Concentration, C(t)=
![(Amount)/(Volume)](https://img.qammunity.org/2021/formulas/mathematics/college/56xil018k7jpyxgeqgdv4079qc2djdy1hl.png)
Therefore:
![C(t)=\frac{1000-1000e^{-(t)/(125)}}{500}\\\\C(t)=2-2e^{-(t)/(125)}](https://img.qammunity.org/2021/formulas/mathematics/college/jie1neatkqzxi5bcedfip6lzsuu9cl4yhg.png)
Therefore:
![C(5)=2-2e^{-(5)/(125)}\\=0.07842$ lb/gal](https://img.qammunity.org/2021/formulas/mathematics/college/njuviqtvd0dvr5n1eqs9kbulmbwiizn5uh.png)
As t tends to infinity
![\lim_(t \to \infty) C(t)=\lim_(t \to \infty) \left(2-2e^{-(t)/(125)}\right)=2$ lb/gal](https://img.qammunity.org/2021/formulas/mathematics/college/wp8gvpstch2zx4cw4xw3gg7gxrns9ukm00.png)