Complete Question
The complete question is shown on the first uploaded image
Answer:
a
b can be written as a linear combination of
![a_1 \ and \ a_2](https://img.qammunity.org/2021/formulas/mathematics/college/ciswoa1l85zxwlv63iomjd3unx4vlh8aij.png)
b
The values of
![x_1 = 4 \ and \ x_2 = 2](https://img.qammunity.org/2021/formulas/mathematics/college/q5s7kky90ikbptr1dd5um5qvhdx8yg4fab.png)
Explanation:
From the question we are told that
![x_1 a_1 +x_2 a_2 = b](https://img.qammunity.org/2021/formulas/mathematics/college/axnqiry9o72n9accxew4qrue340xf47o4i.png)
Where
,
and
![b = (8,26 , -10)](https://img.qammunity.org/2021/formulas/mathematics/college/nx0kfpkshpdauyaxekzukhyrejslups39n.png)
So
![x_1 ( 4, 5,-4) + x_2 (-4 , 3, 3) = (8,26 , -10)](https://img.qammunity.org/2021/formulas/mathematics/college/aj55ogputx8hvcfci2yvkrvi9u37dogfu1.png)
![4x_1, 5x_1,-4x_1 + -4x_2 , 3x_2, 3x_2 = (8,26 , -10)](https://img.qammunity.org/2021/formulas/mathematics/college/d3lwe2umak4ehohbpebgfbn76kt30buz6n.png)
=>
![4x_1 -4x_2 =8](https://img.qammunity.org/2021/formulas/mathematics/college/uaert65rmknev6bv0es17oeuyuefyz1yi2.png)
![x_1 -x_2 =2 ---(1)](https://img.qammunity.org/2021/formulas/mathematics/college/t68et1y2tifmu2vg3a8e9fkbf2h32v1x7y.png)
=>
![5x_1 + 3x_2 = 26 --- (2)](https://img.qammunity.org/2021/formulas/mathematics/college/n7knotq3l0yg6omh0j53fltnhtx9awak6f.png)
=>
![-4x_1 + 3x_2 = -10 ---(3)](https://img.qammunity.org/2021/formulas/mathematics/college/mc9l1di6unfi8k56mw8kqsoaxop993r2d0.png)
Now multiplying equation 1 by 3 and adding the product to equation 2
![.\ \ \ 3x_1 -3x_2 = 6\\+ \ \ 5x_1 + 3x_2 = 26 \\=> \ \ \ 8x_1 = 32](https://img.qammunity.org/2021/formulas/mathematics/college/2x2s1vc3kit7ogdjkub6j3wv4fi4rv8wj3.png)
=>
![x_1 = 4](https://img.qammunity.org/2021/formulas/mathematics/college/1vnitxxmvj6l4w5ufm7009q0x2pwn5y23a.png)
substituting
into equation 1
![4 - x_2 =2](https://img.qammunity.org/2021/formulas/mathematics/college/4nn3erg6nkzix1yzqy7dv3e9quvhnhdtlk.png)
![x_2 =2](https://img.qammunity.org/2021/formulas/mathematics/college/vj0dlybo0s0bwakptjn18hr5rufc3jdy4d.png)
Now to test substitute
into equation 3
![-4(4) + 3(2) = -10](https://img.qammunity.org/2021/formulas/mathematics/college/qtk4nl6apn50c0a9c4xp6evqfog81aluad.png)
![-10 = -10](https://img.qammunity.org/2021/formulas/mathematics/college/fkfbm7kl2stcc8xhw4s3r7c2379mrkjdfb.png)
Since LHS = RHS then there exist values
such that
![x_1 a_1 +x_2 a_2 = b](https://img.qammunity.org/2021/formulas/mathematics/college/axnqiry9o72n9accxew4qrue340xf47o4i.png)
Hence b can be written as a linear combination of
![a_1 \ and \ a_2](https://img.qammunity.org/2021/formulas/mathematics/college/ciswoa1l85zxwlv63iomjd3unx4vlh8aij.png)