189k views
1 vote
M-n/m^2-n^2 + ?/(m-1)(m-2) - 2m/m^2-n^2

User Pseyfert
by
8.1k points

1 Answer

5 votes

Answer:

The answer is "
\bold{((m-1)(m-2))/((m-n))}"

Explanation:

Given:


\bold{((m-n))/(m^2-n^2) + (?)/((m-1)(m-2)) - (2m)/(m^2-n^2)=0}\\\\

let, ? = x then,


\Rightarrow ((m-n))/(m^2-n^2) + (x)/((m-1)(m-2)) - (2m)/(m^2-n^2)=0\\\\\Rightarrow ((m-n))/(m^2-n^2) - (2m)/(m^2-n^2)=- (x)/((m-1)(m-2)) \\\\\Rightarrow ((m-n)-2m)/((m^2-n^2)) =- (x)/((m-1)(m-2)) \\\\\Rightarrow (m-n-2m)/((m^2-n^2)) =- (x)/((m-1)(m-2)) \\\\\Rightarrow (-n-m)/((m^2-n^2)) =- (x)/((m-1)(m-2)) \\\\\Rightarrow (-(m+n))/((m+n)(m-n)) =- (x)/((m-1)(m-2)) \\\\\Rightarrow (-1)/((m-n)) =- (x)/((m-1)(m-2)) \\\\


\Rightarrow -((m-1)(m-2))=-x(m-n) \\\\\Rightarrow x= (- (m-1)(m-2))/(- (m-n)) \\\\\Rightarrow \boxed{x= ((m-1)(m-2))/((m-n))} \\

User Matusalem
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories