Answer:
The magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Step-by-step explanation:
To find the resultant vector, you first calculate x and y components of the two vectors M and N. The components of the vectors are calculated by using cos and sin function.
For M vector you obtain:
![M=M_x\hat{i}+M_y\hat{j}\\\\M=15.0cm\ cos(20\°)\hat{i}+15.0cm\ sin(20\°)\hat{j}\\\\M=14.09cm\ \hat{i}+5.13\ \hat{j}](https://img.qammunity.org/2021/formulas/physics/college/afes3xanjg863poadjw91pgrw4sobfo0l8.png)
For N vector:
![N=N_x\hat{i}+N_y\hat{j}\\\\N=8.0cm\ cos(40\°)\hat{i}+8.0cm\ sin(40\°)\hat{j}\\\\N=6.12cm\ \hat{i}+5.142\ \hat{j}](https://img.qammunity.org/2021/formulas/physics/college/svzs2504vds5debvmbu0cf1lyd331vjqxp.png)
The resultant vector is the sum of the components of M and N:
![F=(M_x+N_x)\hat{i}+(M_y+N_y)\hat{j}\\\\F=(14.09+6.12)cm\ \hat{i}+(5.13+5.142)cm\ \hat{j}\\\\F=20.21cm\ \hat{i}+10.27cm\ \hat{j}](https://img.qammunity.org/2021/formulas/physics/college/o6w1mudsw5fgokwsmy51iznz5ncxnak1wg.png)
The magnitude of the resultant vector is:
![|F|=√((20.21)^2+(10.27)^2)cm=22.66cm](https://img.qammunity.org/2021/formulas/physics/college/ii2o2qj3y2opfzodatdsvcyicve8se42pk.png)
And the direction of the vector is:
![\theta=tan^(-1)((10.27)/(20.21))=29.93\°](https://img.qammunity.org/2021/formulas/physics/college/g62z3msxleab61iw15gqc8ecaw8fkyfrce.png)
hence, the magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°