Answer:
cosecθ = 1/sinθ = 11/6√2
Explanation:
Given that cos θ =7/11, cosec θ = 1/sinθ in trigonometry.
Based on SOH, CAH, TOA;
cosθ = adjacent/hypotenuse = 7/11
adjacent = 7 and hyp = 11
Since sinθ = opp/hyp, we need to get the opposite to be able to calculate sinθ.
Using pythagoras theorem to get the opposite;
![hyp^(2) = adj^(2) + opp ^(2) \\opp = \sqrt{hyp^(2) - adj^(2) } \\opp = \sqrt{11^(2) - 7^(2)} \\opp = √(72) \\opp = 6√(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gvolpytw1rfadrwk6ellnopx2tpl7d91bg.png)
sinθ = 6√2/11
cosecθ = 1/sinθ = 1/( 6√2/11)
cosecθ = 1/sinθ = 11/6√2
Note the error; cscθ
1/cosθ but cscθ = 1/sinθ