Answer:
- Base Length of 84cm
- Height of 42 cm.
Explanation:
Given a box with a square base and an open top which must have a volume of 296352 cubic centimetre. We want to minimize the amount of material used.
Step 1:
Let the side length of the base =x
Let the height of the box =h
Since the box has a square base
Volume,
![V=x^2h=296352](https://img.qammunity.org/2021/formulas/mathematics/college/qertd0qtq32qmvrgzf5xgtd4urmtfz20qu.png)
![h=(296352)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/h450nvtpe6xoi15w7p29bsw9uhja488cow.png)
Surface Area of the box = Base Area + Area of 4 sides
![A(x,h)=x^2+4xh\\$Substitute h=(296352)/(x^2)\\A(x)=x^2+4x\left((296352)/(x^2)\right)\\A(x)=(x^3+1185408)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/7gnb2irw9317k5tph9qzrzcs6gs88nztdt.png)
Step 2: Find the derivative of A(x)
![If\:A(x)=(x^3+1185408)/(x)\\A'(x)=(2x^3-1185408)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/l1mvfoioib39aklzgg3jp8443apnrxx0u2.png)
Step 3: Set A'(x)=0 and solve for x
![A'(x)=(2x^3-1185408)/(x^2)=0\\2x^3-1185408=0\\2x^3=1185408\\$Divide both sides by 2\\x^3=592704\\$Take the cube root of both sides\\x=\sqrt[3]{592704}\\x=84](https://img.qammunity.org/2021/formulas/mathematics/college/2yt4yl7l5ejcpku8s4p307s9dd2tpj9vah.png)
Step 4: Verify that x=84 is a minimum value
We use the second derivative test
![A''(x)=(2x^3+2370816)/(x^3)\\$When x=84$\\A''(x)=6](https://img.qammunity.org/2021/formulas/mathematics/college/lts93v817nq1oi9ieuo5skszkl9dz5iwnj.png)
Since the second derivative is positive at x=84, then it is a minimum point.
Recall:
![h=(296352)/(x^2)=(296352)/(84^2)=42](https://img.qammunity.org/2021/formulas/mathematics/college/9hathjmm668yz8yzgpukcutxiatq881zqi.png)
Therefore, the dimensions that minimizes the box surface area are:
- Base Length of 84cm
- Height of 42 cm.