Answer:
Therefore, the mean and the standard deviation for the number of electrical outages (respectively) are 0.26 and 0.5765 respectively.
Explanation:
Given the probability distribution table below:
![\left|\begin{array}cx&0&1&2&3\\P(x)&0.8&0.15&0.04&0.01\end{array}\right|](https://img.qammunity.org/2021/formulas/mathematics/college/c5xz2z94gr10ek15e2u6db4zrwbuouepzo.png)
(a)Mean
Expected Value,
![\mu =\sum x_iP(x_i)](https://img.qammunity.org/2021/formulas/mathematics/college/f3cz6lncmykvorq2f11gnu2xynqc15kdjn.png)
=(0*0.8)+(1*0.15)+(2*0.04)+(3*0.01)
=0+0.15+0.08+0.03
Mean=0.26
(b)Standard Deviation
![(x-\mu)^2\\(0-0.26)^2=0.0676\\(1-0.26)^2=0.5476\\(2-0.26)^2=3.0276\\(3-0.26)^2=7.5076](https://img.qammunity.org/2021/formulas/mathematics/college/lpam2fgheun5ioqabsgqwcts0fcnqmqzco.png)
Standard Deviation
![=√(\sum (x-\mu)^2P(x))](https://img.qammunity.org/2021/formulas/mathematics/college/u0ykppgctgi2ittvwmj48hks7a2pm1n41v.png)
![=√(0.0676*0.8+0.5476*0.15+3.0276*0.04+7.5076*0.01)\\=√(0.3324)\\=0.5765](https://img.qammunity.org/2021/formulas/mathematics/college/yn9neef2ezp6ky0whh1648r2nnxc3npf2x.png)
Therefore, the mean and the standard deviation for the number of electrical outages (respectively) are 0.26 and 0.5765 respectively.