Answer:
Explanation:
Let X denote the first step
Let Y denote the second step
Then
E(X) = 0.2
E (Y) = 0.3
V (X) = 0.04
V (Y) = 0.09
Now,
E(X,Y) = E[X] + E{Y}
0.2 + 0.3 = 0.5
And since X and Y are independent
Therefore,
V(X , Y) = V(X) + V(Y)
= 0.04 + 0.09
= 0.13
Now required probability is
![P\{ \sum X_i+\sum Y_i<8 \}=P\{ (\sum X_i + \sum Y_i-nE[X+Y])/(√(Var(X+Y)n) ) <(8-20*0.5)/(√(0.13*20) ) \}\\\\=P\{Z_n<(8-10)/(√(2.6) ) \}\\\\=P\{Z_n<-1.24\}](https://img.qammunity.org/2021/formulas/mathematics/college/zrr6mbvdbf2f6xh427c7gvmemym1dny4zb.png)
= Φ(-1.24)
= 1 - Φ (1.24)
= 1 - 0.8925
= 0.1075