Answer:
is linearly dependent set.
Explanation:
Given:
is a linearly dependent set in set of real numbers R
To show: the set
is linearly dependent.
Solution:
If
is a set of linearly dependent vectors then there exists atleast one
such that
![k_1v_1+k_2v_2+k_3v_3+...+k_nv_n=0](https://img.qammunity.org/2021/formulas/mathematics/college/qv7xzt2txyy2kvwlax3bs98ektss8yrjtq.png)
Consider
![k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/jz1nz98ctnmihstqylnpnh7zng1ilso8gm.png)
A linear transformation T: U→V satisfies the following properties:
1.
![T(u_1+u_2)=T(u_1)+T(u_2)](https://img.qammunity.org/2021/formulas/mathematics/college/itekn9w0nezaiph9umjbayhapm0cobo71d.png)
2.
![T(au)=aT(u)](https://img.qammunity.org/2021/formulas/mathematics/college/hqxypvowu6ldat8f818dgcct06eo9z5q9g.png)
Here,
∈ U
As T is a linear transformation,
![k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0\\T(k_1v_1)+T(k_2v_2)+T(k_3v_3)=0\\T(k_1v_1+k_2v_2+k_3v_3)=0\\](https://img.qammunity.org/2021/formulas/mathematics/college/4rigamjbfa7s24hutrg3ooer0t3lv8rpap.png)
As
is a linearly dependent set,
for some
![k_i\\eq 0:i=1,2,3](https://img.qammunity.org/2021/formulas/mathematics/college/6tks1z2j7p2y82d19lq3xfhqjiyyq45nyb.png)
So, for some
![k_i\\eq 0:i=1,2,3](https://img.qammunity.org/2021/formulas/mathematics/college/6tks1z2j7p2y82d19lq3xfhqjiyyq45nyb.png)
![k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/jz1nz98ctnmihstqylnpnh7zng1ilso8gm.png)
Therefore, set
is linearly dependent.