Answer:
a. 7.92% are above 240 mg/dL
b. 31.33% are above to 240 mg/dL
c. 27.1% have borderline high levels between 200 and 240 mg/dL
d. 41.06% have borderline high levels between 200 and 240 mg/dL
Explanation:
From the given information:
a. What percentage of women aged 20-34 have levels above 240 mg/dL?
![Mean ( \mu ) =185 \\ \\ Standard Deviation ( sd )=39 \\ \\ Normal Distribution = Z= X- u / sd ~ N(0,1) \\ \\ P(X > 240) = (240-185)/39 \\ \\ =(55)/(39) \\ \\ = 1.4103 \\ \\ = P ( Z >1.41) \\ \\ From \ \ Standard \ \ Normal \ \ Table \\ \\ = 0.0792 \\ \\](https://img.qammunity.org/2021/formulas/mathematics/college/qptih0ti18ey3w3j292umnv5ngffk8dqkd.png)
= 7.92% are above 240 mg/dL
b. What percentage of men 55-64 have levels above 240 mg/dL? Cholesterol levels from 200 -240 are considered borderline high.
![Mean ( \mu ) =222 \\ \\ Standard Deviation ( sd )=37 \\ \\ Normal Distribution = Z= (X-\mu)/(sd) ~ N(0,1) \\ \\ P(X > 240) = (240-222)/(37) \\ \\ =(18)/(37) = 0.4865 \\ \\ = P ( Z >0.486) \ From \ Standard \ Normal \ Table \\ \\ = 0.3133](https://img.qammunity.org/2021/formulas/mathematics/college/k09d92q16hiuz64n6qjfcpilmq6x008y28.png)
=31.33% are above to 240 mg/dL
Cholesterol levels from 200 -240 are considered borderline high.
c. What percentage of women aged 20-34 have levels between 200 and 240 mg/dL?
![To \ determine \ P(a < = Z < = b) = F(b) - F(a) \\ \\ P(X < 200) = (200-185)/39](https://img.qammunity.org/2021/formulas/mathematics/college/zbog9nnlpycjkbh6ks9q0cfpeoxu4znyvu.png)
![= 15/39 \\ \\ = 0.3846\\ \\ = P ( Z <0.3846) From \ Standard \ Normal \ Table\\ \\= 0.64974](https://img.qammunity.org/2021/formulas/mathematics/college/hpagecr6r1293eaqspkaovpjl5cgh3bvah.png)
![P(X < 240) = (240-185)/39 \\ \\ = 55/39 = 1.4103 \\ \\ = P ( Z <1.4103) From \ Standard \ Normal \ Table \\ \\ = 0.92077 \\ \\ P(200 < X < 240) = 0.92077-0.64974 \\ \\ = 0.271 \\ \\](https://img.qammunity.org/2021/formulas/mathematics/college/xr16s6m3pyfqnoju0393ccdvty4xcm5zcx.png)
= 27.1% have borderline high levels between 200 and 240 mg/dL
d. What percentage of men 55-64 have levels between 200 and 240 mg/dL?
![To \ determine \ P(a < = Z < = b) = F(b) - F(a) \\ \\ P(X < 200) = (200-222)/37 \\ \\= -22/37 \\ \\ = -0.5946](https://img.qammunity.org/2021/formulas/mathematics/college/6urf8aiir946ezd05lko622ipudk97xcoo.png)
![= P ( Z <-0.5946) From \ Standard \ Normal \ Table \\ \\ = 0.27606](https://img.qammunity.org/2021/formulas/mathematics/college/o8kg4irwk3kl8jc5kypp9q320i0j0ec8gj.png)
![P(X < 240) = (240-222)/37 \\ \\ = 18/37 \\ \\ = 0.4865](https://img.qammunity.org/2021/formulas/mathematics/college/lft1pndjmt7i4phak3doikce7a7i5hy53a.png)
![= P ( Z <0.4865) From \ Standard \ Normal \ Table \\ \\ = 0.68669 \\ \\ P(200 < X < 240) = 0.68669-0.27606 \\ \\ = 0.4106](https://img.qammunity.org/2021/formulas/mathematics/college/pmjaczedyvksgk7h41zhelb0o4zu3kh8ig.png)
= 41.06% have borderline high levels between 200 and 240 mg/dL