Answer:
T = 47.1875°C
Explanation:
Given:
Surrounding temp, Ts = 100°C
Initial Temperature ,T0= 20°C
Increase in temperature = 15°C
Final temperature, T = 20 + 15 = 35°C
Time, t = 9 seconds
Let's take Newton's law of cooling:
![T - Ts = (T_0 - Ts)e^k^t](https://img.qammunity.org/2021/formulas/mathematics/college/isctpxqz6y0nlxtkul11m6sod59se1n9lw.png)
We'll solve for k
![35 - 100 = (20 - 100)e^9^k](https://img.qammunity.org/2021/formulas/mathematics/college/3m1o85eaf3qnhsoam84xh2sl8y6pdncejq.png)
Divide both sides by -5
![9k = ln ((13)/(16))](https://img.qammunity.org/2021/formulas/mathematics/college/o259jq6k91j1e4zh87pb7tofdatmvp46tv.png)
![k = (1)/(9) ln ((13)/(16))](https://img.qammunity.org/2021/formulas/mathematics/college/9kk6kfzpm4d7gu7503vaed9isolfkgnol8.png)
Let's now find the temperature of the ball after 18 seconds in boiling water.
Use the Newton's equation again:
![T - Ts = (T_0 - Ts)e^k^t](https://img.qammunity.org/2021/formulas/mathematics/college/isctpxqz6y0nlxtkul11m6sod59se1n9lw.png)
![T - 100 = (20 - 100)e^-0.0^2^3^0^7^1^0^4^0^5^3^*^1^8](https://img.qammunity.org/2021/formulas/mathematics/college/ol8hsv8t3ibo87ufw8cg9xqi2utu8tzo1l.png)
![T - 100 = (-80)e^-0.0^2^3^0^7^1^0^4^0^5^3^*^1^8](https://img.qammunity.org/2021/formulas/mathematics/college/x0djsriqew90qk5hod711nh7k9hfgag39o.png)
![T - 100= -52.8125](https://img.qammunity.org/2021/formulas/mathematics/college/h379zu38de9yzeles04inhxt0vuo4q7xpf.png)
T = 47.1875°C
Temperature of the ball after 18 seconds in boiling water is 47.1875°C