Answer:
The 90% confidence interval for the difference between means is (-161.18, 205.18).
Explanation:
Sample mean and standard deviation for Region I:
![M=(1)/(12)\sum_(i=1)^(12)(438+1013+1127+737+...+1075+500+340)\\\\\\ M=(8424)/(12)=702](https://img.qammunity.org/2021/formulas/mathematics/college/92g3xh1nz1m3w180kzo7eo7881vur3ijzb.png)
![s=\sqrt{(1)/((n-1))\sum_(i=1)^(12)(x_i-M)^2}\\\\\\s=\sqrt{(1)/(11)\cdot [(438-(702))^2+(1013-(702))^2+...+(500-(702))^2+(340-(702))^2]}\\\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/mr5hckrjxu9ipmqe4th3g1cggj1ovdxg00.png)
![s=\sqrt{(1)/(11)\cdot [(69696)+(96721)+...+(131044)]}\\\\\\s=\sqrt{(1174834)/(11)}=√(106803.1)\\\\\\s=326.8](https://img.qammunity.org/2021/formulas/mathematics/college/r2o0utdpp4m7bedv46vofpcqoei6cd6m0x.png)
Sample mean and standard deviation for Region II:
![M=(1)/(15)\sum_(i=1)^(15)(778+464+563+...+479+710+389+826)\\\\\\ M=(10204)/(15)=680](https://img.qammunity.org/2021/formulas/mathematics/college/4gbs8p1shd1g3txi5tr3aohxaywhza08j5.png)
![s=\sqrt{(1)/((n-1))\sum_(i=1)^(15)(x_i-M)^2}\\\\\\s=\sqrt{(1)/(14)\cdot [(778-(680))^2+(464-(680))^2+...+(389-(680))^2+(826-(680))^2]}\\\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/5j1sigxd2jjl39l7nvalzr6jvuf6mbece6.png)
![s=\sqrt{(1)/(14)\cdot [(9551.804)+(46771.271)+...+(84836.27)+(21238.2)]}\\\\\\ s=\sqrt{(545975.7)/(14)}=√(38998)\\\\\\s=197.5](https://img.qammunity.org/2021/formulas/mathematics/college/uzdqs37a4krkcrciuohb9e15ylk1qh6v56.png)
Now, we have to calculate a 90% confidence level for the difference of means.
The degrees of freedom are:
![df=n1+n2-2=12+15-2=25](https://img.qammunity.org/2021/formulas/mathematics/college/i8y2nsykk91r8is21pspkhyeibb4iym7o7.png)
The critical value for 25 degrees of freedom and a confidence level of 90% is t=1.708
The difference between sample means is Md=22.
The estimated standard error of the difference between means is computed using the formula:
The margin of error (MOE) can be calculated as:
![MOE=t\cdot s_(M_d)=1.708 \cdot 107.24=183.18](https://img.qammunity.org/2021/formulas/mathematics/college/kydmq6apgpx74l4u11rpg43g9bexpp8cbj.png)
Then, the lower and upper bounds of the confidence interval are:
![LL=M_d-t \cdot s_(M_d) = 22-183.18=-161.18\\\\UL=M_d+t \cdot s_(M_d) = 22+183.18=205.18](https://img.qammunity.org/2021/formulas/mathematics/college/kniqcmcqjb1ia7kigu5zvgegqwk0bip6o9.png)
The 90% confidence interval for the difference between means is (-161.18, 205.18).