Answer:
1. x ≥ 0
2. x ≥ -2
3. x ≥ 2
4. x ≤ 2
5. x ≤ 0
6. All real numbers
Explanation:
Domain of square function:
Suppose we have a square function in the following format:
![f(x) = \sqrt[n]{g(x)}](https://img.qammunity.org/2021/formulas/mathematics/college/8erygjarkejiotlizc01tzrj3qph44wn35.png)
If n is even, the domain of f(x) is:
![g(x) \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/77vg35yi5a10scu2wfkse672dz4615vzgs.png)
Otherwise, if n is odd, the domain of f(x) is all real numbers.
1. S(x) = √x
If n does not appear is that it is 2.
g(x) = x
So the domain is:
![x \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/uyx387ln472vfm7h14xalgcsusrbrcib1d.png)
2. H(x) = √2+x
g(x) = 2 + x
So
![2 + x \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/8a4e6o7f1a27y10c7c1oil6u0vhazoionv.png)
![x \geq -2](https://img.qammunity.org/2021/formulas/mathematics/high-school/lqjq7c072dd4j578y0ivoi378l9pe7g55r.png)
3. Z(x) = √x-2
g(x) = x - 2
![x - 2 \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/nlvpn703r4bpqptwg4cj2rzfc4altc33i0.png)
![x \geq 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8gtd7smq2hkyq5g52mc95jka3e49w7n3v.png)
4. Q(x) = √2-x
g(x) = 2 - x
![2 - x \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/thyutufykq4li71j9e63t06ma0q7zs58x9.png)
![-x \geq -2](https://img.qammunity.org/2021/formulas/mathematics/high-school/c9vgp8jf8xri5x95qtsu801wzegoz2uyrs.png)
Multiplying by -1, everything
![x \leq 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/rmfff7pv0qmiziw4ukcqmgrrabmln091x3.png)
5. V(x) = √-x
g(x) = -x
Then
![-x \geq 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/y5qp75m4tzqdao241tii63hr4hbkmji2fq.png)
Multiplying by -1
![x \leq 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2pfqzyzr7cqpjqnvf8bq6syyuoo4aw61if.png)
6. N(x) = ^3√2-x
Cubic root(odd number), so all real numbers.