Answer:
Explanation:
17 : i 12x^2(4x−3) ,
ii : 5x(x−3y) ,
iii: 5xy^2z(3x^2−5z^2)
18) since the two polynomial are equal then :
2x^3+ax^2+3x-5 = x^3+x^2-2x+a same remainder x-2 then x=2
2(2)^3+a(2)^2+3(2)-5=(2)^3+(2)^2-2(2)+a solve for a
-3a=9
a=-3
18 ) x^3+y^3 -125+15xy
x^3+y^3-(5)^3-3(x)(y)(-5) then factorize x^3+y^3
(x+y)(x^2-xy+y^2)- (5)(5)^2-3(x)(y)(-5) common factor x+y-5
(x+y-5)(x^2-xy+y^2-5^2-3xy given x+y=5
5-5( x^2-xy+y^2-25-3xy) = 0
the value of the expression equal to zero