44.6k views
4 votes
If 2(x+y)^2=116, and xy= 24, find the value of x^2+y^2.

User Activebiz
by
4.0k points

2 Answers

5 votes

Answer:

10

Explanation:


2(x + y)^(2) = 116 \\ {(x + y)}^(2) = (116)/(2) \\ {(x + y)}^(2) = 58....(1) \\ xy = 24.....(2) \\ \because \: {(x + y)}^(2) = {x}^(2) + {y}^(2) + 2xy \\ \therefore \: 58 = {x}^(2) + {y}^(2) + 2 * 24 \\ \therefore \: 58 = {x}^(2) + {y}^(2) + 48 \\ \therefore \: {x}^(2) + {y}^(2) = 58 - 48 \\ \huge \purple{ \boxed{\therefore \: {x}^(2) + {y}^(2) = 10}}

User Shubham Gupta
by
3.9k points
2 votes

Answer:

10

Explanation:

2(x+y)^2=116

xy= 24

x^2+y^2 =?

---------------

x^2+y^2= (x+y)^2- 2xy

  • (x+y)^2 = 116/2 = 58
  • x^2+y^2 = 58- 2*24 = 58 - 40= 10
User Anupriya Jaju
by
3.6k points