3.2k views
5 votes
Ax+by=(a-b) , bx - ay =(a+b) simultaneous linear equations using cross multiplication

User Cjauvin
by
4.4k points

1 Answer

1 vote

Answer:


x=1\,,\,y=-1

Explanation:

Given:
ax+by=a-b\,,\,bx-ay=a+b

To solve: the given linear equations

Solution:

Consider the equations:


A_1x+B_1y+C_1=0\\A_2x+B_2y+C_2=0

By method of cross multiplication:


(x)/(B_1C_2-B_2C_1)=(y)/(C_1A_2-C_2A_1)=(1)/(A_1B_2-A_2B_1)

For equations:
ax+by=a-b\,,\,bx-ay=a+b


ax+by-(a-b)=0\\bx-ay-(a+b)=0

Take
A_1=a\,,\,B_1=b\,,\,C_1=-(a-b)\,,\,A_2=b\,,\,B_2=-a\,,\,C_2=-(a+b)

So,


(x)/(-b(a+b)-a(a-b))=(y)/(-b(a-b)+a(a+b))=(1)/(-a^2-b^2)\\(x)/(-ab-b^2-a^2+ab)=(y)/(-ab+b^2+a^2+ab)=(1)/(-(a^2+b^2))\\(x)/(-(a^2+b^2))=(y)/(a^2+b^2)=(1)/(-(a^2+b^2))\\(x)/(-(a^2+b^2))=(1)/(-(a^2+b^2))\,,\,(y)/(a^2+b^2)=(1)/(-(a^2+b^2))\\x=1\,,\,y=-1

User Soldieraman
by
5.2k points