The interpretation of the given question is as follows:
Use the given inverse to solve the system of equations
![x- y - z = -6 \\ \\ 2y + z = -6 \\ \\ 3x -8 y = - (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/izvmh9vje1n2cx70j18kjbzwplz9vprus8.png)
The inverse of
![\left[\begin{array}{ccc}1&-1&1\\0&2&1\\3&-8&0\end{array}\right] is \left[\begin{array}{ccc}-8&8&3\\-3&3&1\\6&-5&-2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/tn9e6rl3mu56r1kh5ingj8oh1k6hu47smw.png)
x =
y =
z =
Answer:
x = - 1.5
y = - 0.5
z = - 5
Explanation:
Using the correlation of inverse of matrix AX = B to solve the question above;
AX = B
⇒ A⁻¹(AX) = A⁻¹ B
X = A⁻¹ B
So ;
X = A⁻¹ B
![\left[\begin{array}{ccc}-6\\ -6\\- (1)/(2)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/nxgnwg9g2rvi7kyxlhv5ijbf4ajfi3js2j.png)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}(-8*-6)+(8*-6)+(3*-(1)/(2))\\(-3*-6)+(3*-6)+(1*-(1)/(2))\\(6*-6)+(5*-6)+(-2* - (1)/(2))\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/ynicdt9h7iqbcypixqusr5kesz59832d5u.png)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}(48)+(-48)+((-3)/(2))\\(18)+(-18)+((-1)/(2))\\(-36)+(30)+(1)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/7fmt9t6edytmlz42eiu3nfic2yimk9fpw0.png)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}((-3)/(2))\\((-1)/(2))\\(-5)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/ye53ry28a005pa4y7c8t8syfqob6gvxa8a.png)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}-1.5\\-0.5\\ -5\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/59jel8xkfb2x7d8xbnt6e0eujdpz11v5o4.png)