Answer:
Area of rectangle =
![196\,m^2](https://img.qammunity.org/2021/formulas/mathematics/college/b7tw901rm54tf98dr00e0r0qyxw682puyj.png)
Length of rectangle = 14 m
Width of rectangle = 14 m
Explanation:
Given:
Perimeter of rectangle is 56 m
To find: the maximized area of a rectangle and the length and width
Solution:
A function
has a point of maxima at
if
![f''(x_0)<0](https://img.qammunity.org/2021/formulas/mathematics/college/fq8gt7j4yc4ckaljfxuhknv8zn4ogtfeta.png)
Let x, y denotes length and width of the rectangle.
Perimeter of rectangle = 2( length + width )
![=2(x+y)](https://img.qammunity.org/2021/formulas/mathematics/college/5u5bc87ks4erzc3pey0kupzndpk2ol0zdk.png)
Also, perimeter of rectangle is equal to 56 m.
So,
![56=2(x+y)\\x+y=28\\y=28-x](https://img.qammunity.org/2021/formulas/mathematics/college/eu953d6eqjpil9k1k8utzo2wb18f6g1qi2.png)
Let A denotes area of rectangle.
A = length × width
![A=xy\\=x(28-x)\\=28x-x^2](https://img.qammunity.org/2021/formulas/mathematics/college/ntey80n1f5q7qsr3660ztdvtg317m0z7uf.png)
Differentiate with respect to x
![(dA)/(dx)=28-2x](https://img.qammunity.org/2021/formulas/mathematics/college/zvnacgp1pm3l2g15ozsuqjscquk862g37x.png)
Put
![(dA)/(dx)=0](https://img.qammunity.org/2021/formulas/mathematics/college/ft804gjejs956ygfdpoaje5xytxvvpo0vt.png)
![28-2x=0\\2x=28\\x=14](https://img.qammunity.org/2021/formulas/mathematics/college/ur84b42xydyvd00ym75vymug3iy8o7ms3b.png)
Also,
![(d^2A)/(dx^2)=-2<0](https://img.qammunity.org/2021/formulas/mathematics/college/tw147ph1dxjpiaqa4oxy2lx09bucn2ucqc.png)
At x = 14,
![(d^2A)/(dx^2)=-2<0](https://img.qammunity.org/2021/formulas/mathematics/college/tw147ph1dxjpiaqa4oxy2lx09bucn2ucqc.png)
So, x = 14 is a point of maxima
So,
![y=28-x=28-14=14](https://img.qammunity.org/2021/formulas/mathematics/college/8lnam3os2w4wn9z9q8u11uh43e5c1oxrlr.png)
Area of rectangle:
![A=xy=14(14)=196\,m^2](https://img.qammunity.org/2021/formulas/mathematics/college/e69r983qnqnua13c97d9ja26n7fccqjo5t.png)
Length of rectangle = 14 m
Width of rectangle = 14 m