Answer:
![√(221)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gtf8c0r61t17yxvo3f7j7cyfr9zejry4sd.png)
Explanation:
The distance formula is:
![d = √((x_2 - x_1)^2 + (y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8p65cqwum3v73ztnl7l9zz3lt08vmtaidh.png)
where (x1, y1) are the coordinates of the first point, and (x2,y2) are the coordinates of the second point.
The point X is at (-6,3). The point Y is at (8, -2). Therefore, we can plug these points into the formula.
![d = √((8 - (-6))^2 + (-2-3)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/icm1kqmshie6qzv88j65t80gyinyf2x2vr.png)
First, solve inside the parentheses
![d = √((8+6)^2 + (-2-3)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/11nxupylfxi2pdt2u6gcbr8ugvjq7ae7zr.png)
![d = √((14)^2 + (-5)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h9fwfpn3i8z42l9b2qbujnnp4u4sgejvo5.png)
Solve the exponents.
14^2=14*14=196
![d=√(196+(-5)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f7xckcs5gfz0nleyzvkgqf6srniat8tstk.png)
-5^2=-5*-5=25
![d=√(196+25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7l0jvm62z6hddcx7lbuz5cqn0qz6f9a6oz.png)
Add 196 and 25
![d=√(221)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c8nrgbmd8gn1i5osn8ygr7mlbfy6g7hl4w.png)
d=14.8660687473
The distance between the points is
or about 14.87