113k views
5 votes
Make x the subject of the formula


r = \sqrt{ (ax - p)/(q + bx) }






User Vrrathod
by
8.7k points

1 Answer

4 votes

Answer:


\boxed{x = \frac{p + q {r}^(2) }{a - b {r}^(2) } }

Explanation:


Solve \: for \: x: \\ = > r = \sqrt{ (ax - p)/(q + bx) } \\ \\ </p><p>r = \sqrt{ (ax - p)/(q + bx) } \: is \: equivalent \: to \: \sqrt{ (ax - p)/(q + bx) } = r :\\ = > \sqrt{ (ax - p)/(q + bx) } = r \\ \\ Raise \: both \: sides \: to \: the \: power \: of \: two: \\ = > (ax - p)/(q + bx) = {r}^(2) \\ \\ Multiply \: both \: sides \: by \: (q + b x): \\ = > ax - p = {r}^(2) (q + bx) \\ \\ Expand \: out \: terms \: of \: the \: right \: hand \: side: \\ = > ax - p = q {r}^(2) + b {r}^(2)x \\ \\ Subtract \: b {r}^(2)x - p \: from \: both \: sides: \\ = > x(a - b {r}^(2) ) = p + q {r}^(2) \\ \\ Divide \: both \: sides \: by \: a - b {r}^(2) : \\ = > x = \frac{p + q {r}^(2) }{a - b {r}^(2) }

User Benja Garrido
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories