29.6k views
2 votes
G/(g^2-h^2) - ?/(g-h)^2 = g^2-2gh-h^2/(g-h)^2(g+h)

2 Answers

2 votes

Answer:

-g5 - g4h + 3g3h2 + g2h3 - g2h2 + g2 - 2gh4 - 2gh3 - gh - h4 / (g + h) • (g - h)2

Explanation:

User Medya Gh
by
4.7k points
4 votes

Answer:

? = h

Explanation:

Solve for ?:


(g)/(g^2-h^2)-(?)/((g-h)^2)=(g^2-2gh-h^2)/((g-h)^2(g+h))\\\\(g(g-h))/((g-h)^2(g+h))-(?(g+h))/((g-h)^2(g+h))=(g^2-2gh-h^2)/((g-h)^2(g+h))\\\\(g^2 -gh -?(g+h))/((g-h)^2(g+h))=(g^2-2gh-h^2)/((g-h)^2(g+h))\\\\\text{Equating numerators, we have ...}\\\\g^2-gh-?(g+h)=g^2-gh-h(g+h)\\\\?=(-h(g+h))/(-(g+h))=h

The numerator of interest is h.

User Simon Campbell
by
5.0k points