205k views
1 vote
How many grams of Br2 are needed to form 67.1 g of AlBr3 ?

2Al(s)+3Br2(l)⟶2AlBr3(s)

User Boardernin
by
5.5k points

1 Answer

4 votes

Answer:

Approximately
60.3\; \rm g.

Step-by-step explanation:

Look up the relative atomic mass of
\rm Al and
\rm Br on a modern periodic table:


  • \rm Al:
    26.982.

  • \rm Br:
    79.904.

Calculate the formula mass of
\rm AlBr_3 and
\rm Br_2:


\begin{aligned}& M(\mathrm{AlBr_3}) = 26.982 + 3 * 79.904 \approx 266.694\; \rm g \cdot mol^(-1) \\ & M(\mathrm{Br_2}) = 2* 79.904 \approx 159.808\; \rm g \cdot mol^(-1)\end{aligned}.

Calculate the number of moles of formula units in
67.1\; \rm g of
\rm AlBr_3:


\begin{aligned}n(\mathrm{AlBr_3}) &= \frac{m(\mathrm{AlBr_3})}{M(\mathrm{AlBr_3})} \\ &\approx (67.1\; \rm g)/(266.694\; \rm g \cdot mol^(-1)) \approx 0.2516\; \rm mol \end{aligned}.

Refer to the balanced equation for this reaction. The ratio between the coefficients of
\rm Br_2 and
\rm AlBr_3 in that equation is three-to-two. That corresponds to the ratio:


\begin{aligned}\frac{n(\text{$\mathrm{Br_2}$, consumed})}{n(\text{$\mathrm{AlBr_3}$, produced})} &= (3)/(2)\end{aligned}.

It is already calculated that approximately
0.2516\; \rm mol of
\rm AlBr_3 was produced through this reaction. Apply this ratio to approximate the (minimum) number of moles of
\rm Br_2 that is consumed:


\displaystyle (3)/(2) * 0.2516\; \rm mol \approx 0.3774\; \rm mol.

Calculate the mass of that
0.3774\; \rm mol of
\rm Br_2:


\begin{aligned}m(\mathrm{Br_2}) &= n(\mathrm{Br_2})\cdot M(\mathrm{Br_2}) \\ &\approx 0.3774\; \rm mol * 159.808\; \rm g \cdot mol^(-1) \approx 60.3\; \rm g\end{aligned}.

User Martinffx
by
5.0k points