Answer:

Explanation:
Minimum: (0, -10)
Maximum: (2, -4)
y = A sin (Bx - C) + D
- Amplitude (A) = (Max - Min)/2
- Period = 2π/B → B = 2π/Period
- Phase Shift = C/B → C = B × Phase Shift
- Midline (D) = (Max + Min)/2



Sin usually starts at (0, 0). For this graph, the midline touches 0 when x = 1 so the Phase Shift = 1.

