Answer:
Those graphs do not intersect.
Estes gráficos no se intersecciónan
Explanation:
The intersection points are x for which:
![f(x) = g(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wqzwxh4odtu32tppzn5v5zphci5c1142sk.png)
In this question:
![f(x) = x^(2) + 6x - 7](https://img.qammunity.org/2021/formulas/mathematics/college/jm95rgh41xgsadf4mhe23pyiqvfzte44x6.png)
![g(x) = 4x - 10](https://img.qammunity.org/2021/formulas/mathematics/college/wsddn96mxwce2484rhtbtshr5wp3bh4nb3.png)
So
![x^(2) + 6x - 7 = 4x - 10](https://img.qammunity.org/2021/formulas/mathematics/college/32qs0i654283zhi212tu3489p579i1yhdb.png)
![x^(2) + 2x + 3 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/xj58tikt9qgs53jsk05e4o2t1na2mt5qua.png)
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/oyav4t50gxwlebnxow0jkg1h1wg0cug5v8.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/ab43b5ab1q0isg535d913r7c1xw0asolw7.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2021/formulas/mathematics/college/zirtrp8pc9sd5ixxvxuq5wacoopj7h2hyk.png)
In this question:
![x^(2) + 2x + 3 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/xj58tikt9qgs53jsk05e4o2t1na2mt5qua.png)
So
![a = 1, b = 2, c = 3](https://img.qammunity.org/2021/formulas/mathematics/college/8hrhdnw9ltvmahbays19xf6hjg6xyjl4xf.png)
![\bigtriangleup = b^(2) - 4ac = 2^(2) - 4*1*3 = -8](https://img.qammunity.org/2021/formulas/mathematics/college/97j2vi9vzq6le86kz5aj0opw85uf6ox3sh.png)
Sincce
is negative, there are no solutions, which means that those graphs do not intersect.