Answer:
(A)-494
Explanation:
Given the arithmetic series
![S_(19)=\sum_(k=1)^(19)4-3k](https://img.qammunity.org/2021/formulas/mathematics/high-school/b75j7961b9o5rth4ml762vxtaozwtq4thb.png)
The terms in the sequence are:
- When k=1, 4-3k=4-3(1)=1
- When k=2, 4-3k=4-3(2)=-2
- When k=3, 4-3k=4-3(3)=-5
Therefore, the terms in the sequence are: 1, -2, -5, ...
First term, a =1
Common difference, d=-2-1=-3
The sum of an arithmetic series,
![S_n=(n)/(2)[2a+(n-1)d]](https://img.qammunity.org/2021/formulas/mathematics/high-school/nbbqumcy0s5kebc4qw68eqqy1qlvhszlv2.png)
Therefore:
![S_(19)=(19)/(2)[2(1)+(19-1)(-3)]\\=9.5[2+18*-3]\\=9.5[2-54]\\=9.5*-52\\=-494](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlvozt6h3w64oguavhnpahfzot4740b6on.png)
The correct option is A.