Answer:
E = 132.69 sin(ωt -11.56)
i(t) = 6.64 sin (ωt +48.44) A
Step-by-step explanation:
given data
e1 = 80 sin ωt volts 80 < 0
e2 = 60 sin (ωt + π/2) volts 60 < 90
e3 = 100 sin (ωt – π/3) volts 100 < -60
solution
resultant will be = e2 + e2 + e3
E = 80 < 0 + 60 < 90 + 100 < -60
= 80 + j60 + 50 - j50
= 130 + (-j26.60)
= 132.69 that is less than -11.56
so
E = 132.69 sin(ωt -11.56)
and
as we have given the impedance
z = (10-j17.3)Ω
z = 19.982 < -60
and
i(t) =
sin(ωt -11.56 + 60)
i(t) = 6.64 sin (ωt +48.44) A