Answer:
a) ( 76.20, 83.80)
b) ( 76.47, 83.53)
Explanation:
a)
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 80
Standard deviation r = 15
Number of samples n = 60
Confidence interval = 95%
z(at 95% confidence) = 1.96
Substituting the values we have;
80 +/-1.96(15/√60)
80+/-1.96(1.936491673103)
80+/- 3.80
= ( 76.20, 83.80)
Therefore at 95% confidence interval = ( 76.20, 83.80)
b)
Mean x = 80
Standard deviation r = 15
Number of samples n = 120
Confidence interval = 99%
z(at 99% confidence) = 2.58
Substituting the values we have;
80 +/-2.58(15/√120)
80+/-2.58(1.369306393762)
80+/- 3.53
= ( 76.47, 83.53)
Therefore at 99% confidence interval = ( 76.47, 83.53)