15.1k views
1 vote
Given: ΔABC

m∠1=m∠2
D∈
AC
, BD = DC
m∠BDC = 100°
Find: m∠A, m∠B, m∠C

Given: ΔABC m∠1=m∠2 D∈ AC , BD = DC m∠BDC = 100° Find: m∠A, m∠B, m∠C-example-1

1 Answer

4 votes

Answer:


\angle A = 60^(\circ) ,
\angle B = 80^(\circ)and
\angle C = 40^(\circ)

Explanation:

We are given that BD = DC

BD= DC

So,
\angle DBC = \angle BCD (Opposite angles of equal sides are equal) ----1

We are given that ∠BDC = 100°

In ΔBDC

Angle sum property of triangle : The sum of all angles of triangle is 180°

So,
\angle BDC+\angle DBC +\angle BCD = 180^(\circ)


100^(\circ)+2 \angle DBC= 180^(\circ)(Using 1)


2 \angle DBC = 180^(\circ)-100^(\circ)


2 \angle DBC = 80^(\circ)


\angle DBC = 40^(\circ)


\angle DBC = \angle BCD=\angle 2 = 40^(\circ)

So,
\angle C = 40^(\circ)

We are given that
\angle 1 = \angle 2

So,
\angle 1 = \angle 2 = 40^(\circ)

Now
\angle BDC+\angle BDA = 180^(\circ)(Linear pair)


100^(\circ)+\angle BDA = 180^(\circ)\\\angle BDA =80^(\circ)

In ΔABD


\angle ABD+\angle BDA+\angle BAD = 180^(\circ)(Angle sum property)


\angle 1 +\angle BDA+\angle BAD = 180^(\circ)\\40^(\circ)+80^(\circ)+\angle BAD = 180^(\circ)\\120^(\circ)+\angle BAD = 180^(\circ)\\\angle BAD =60^(\circ)

So,
\angle A =60^(\circ)\\\angle B = \angle 1+\angle 2 = 40^(\circ)+40^(\circ)=80^(\circ)

Hence
\angle A = 60^(\circ) ,
\angle B = 80^(\circ)and
\angle C = 40^(\circ)

User Timmkrause
by
3.8k points