Answer:
98% confidence interval for the mean is
(0.72689 , 1.57311)
Explanation:
Given random sample size 'n' = 6
Given sample mean x⁻ = 1.15
Given sample standard deviation 'S' = 0.308
98% confidence interval for the mean is determined by
![(x^(-) - t_{(\alpha )/(2) } (S)/(√(n) ) , x^(-) + t_{(\alpha )/(2) } (S)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/almm4xsk4mv6zqrbo6zj7e3j56dp905rpo.png)
Degrees of freedom ν =n-1 =6-1 =5
Critical value : -
![t_{(0.02)/(2) } = t_(0.01) = 3.365](https://img.qammunity.org/2021/formulas/mathematics/college/ipescbqza55k2eh1s4mlqsytqbus3g4tbt.png)
98% confidence interval for the mean is determined by
![(1.15 - 3.365(0.308)/(√(6) ) , 1.15+ 3.365(0.308)/(√(6) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/xy01nxuhfy0wi9sir98fmxcglppojjqemr.png)
On calculation , we get
( 1.15 - 0.42311 , 1.15+ 0.42311)
(0.72689 , 1.57311)
Final answer:-
98% confidence interval for the mean is
(0.72689 , 1.57311)