Answer:
The Estimated standard error = 0.8010
Explanation:
Step(I):-
Given first sample size n₁ = 10
Given second sample size n₂ = 15
Mean of the first sample x₁⁻ = 10
Mean of the second sample x₂⁻ = 15
The standard deviation of the first sample 'S₁'= 1.5
The standard deviation of the second sample 'S₂'= 2.5
step(ii):-
The standard error of two groups is determined by
![S.E( X^(-) _(1) - X^(-) _(2) ) = \sqrt{(S^(2) _(1) )/(n_(1) ) +(S^(2) _(2) )/(n_(2) ) }](https://img.qammunity.org/2021/formulas/mathematics/college/f6e8c5rle4axpawm9svl0q9tngflxtq02i.png)
![S.E( X^(-) _(1) - X^(-) _(2) ) = \sqrt{((1.5)^(2) )/(10) +((2.5)^(2) )/(15) }](https://img.qammunity.org/2021/formulas/mathematics/college/56ppt56n5nxw736eyiccmhjyw8gg6f5eou.png)
![S.E( X^(-) _(1) - X^(-) _(2) ) = √(0.64166) = 0.8010](https://img.qammunity.org/2021/formulas/mathematics/college/qwqk62ol2apnj8w44dl2xfafwnkz4ps6d3.png)
Final answer:-
The Estimated standard error = 0.8010