Answer:
![x=-cos(t)+2sin(t)](https://img.qammunity.org/2021/formulas/mathematics/college/lktbcltqef1gwfgp99ivflhoftti2clsxx.png)
Explanation:
The problem is very simple, since they give us the solution from the start. However I will show you how they came to that solution:
A differential equation of the form:
![a_n y^n +a_n_-_1y^(n-1)+...+a_1y'+a_oy=0](https://img.qammunity.org/2021/formulas/mathematics/college/iofm547r3j5ftx248xu9rb7vg30elmpl7c.png)
Will have a characteristic equation of the form:
![a_n r^n +a_n_-_1r^(n-1)+...+a_1r+a_o=0](https://img.qammunity.org/2021/formulas/mathematics/college/1o233xk96wwbd0j5pd7c3d6irvk7m86wr8.png)
Where solutions
are the roots from which the general solution can be found.
For real roots the solution is given by:
![y(t)=c_1e^(r_1t) +c_2e^(r_2t)](https://img.qammunity.org/2021/formulas/mathematics/college/9ntb26tullpdqzg5dhkmlchmy9nl5qaw2d.png)
For real repeated roots the solution is given by:
![y(t)=c_1e^(rt) +c_2te^(rt)](https://img.qammunity.org/2021/formulas/mathematics/college/5etjeon9p4w04ecmsnq3wr3zso371bx03c.png)
For complex roots the solution is given by:
![y(t)=c_1e^(\lambda t) cos(\mu t)+c_2e^(\lambda t) sin(\mu t)](https://img.qammunity.org/2021/formulas/mathematics/college/emb2i8p9jne8kc6eqpazshjhuyzf3m1o29.png)
Where:
![r_1_,_2=\lambda \pm \mu i](https://img.qammunity.org/2021/formulas/mathematics/college/vbzoo2rv13qojruqvx6d5c65hu9nu4eysv.png)
Let's find the solution for
using the previous information:
The characteristic equation is:
![r^(2) +1=0](https://img.qammunity.org/2021/formulas/mathematics/college/6hcj0wqja1w2slgz9ngnijnz1og6wjyaee.png)
So, the roots are given by:
![r_1_,_2=0\pm √(-1) =\pm i](https://img.qammunity.org/2021/formulas/mathematics/college/y8olwkpzwgmovzyn4u3ia6bn1vci5u2mr6.png)
Therefore, the solution is:
![x(t)=c_1cos(t)+c_2sin(t)](https://img.qammunity.org/2021/formulas/mathematics/college/zsp40o7kp7zxtvi650tple5bjiwws7xseo.png)
As you can see, is the same solution provided by the problem.
Moving on, let's find the derivative of
in order to find the constants
and
:
![x'(t)=-c_1sin(t)+c_2cos(t)](https://img.qammunity.org/2021/formulas/mathematics/college/315nakyx6ug5jtam0j0y88ik6s6n358mko.png)
Evaluating the initial conditions:
![x(0)=-1\\\\-1=c_1cos(0)+c_2sin(0)\\\\-1=c_1](https://img.qammunity.org/2021/formulas/mathematics/college/sje91675r7n1qlj4bm2dpjq9z3wkmjzb2y.png)
And
![x'(0)=2\\\\2=-c_1sin(0)+c_2cos(0)\\\\2=c_2](https://img.qammunity.org/2021/formulas/mathematics/college/puk0tujwbf0dcrl2geyx33wvjo9csopuy7.png)
Now we have found the value of the constants, the solution of the second-order IVP is:
![x=-cos(t)+2sin(t)](https://img.qammunity.org/2021/formulas/mathematics/college/lktbcltqef1gwfgp99ivflhoftti2clsxx.png)