Answer:
f(x) has a minimum value is zero at
![x = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1kwnbk7q4emvcjmp0vlw6vem8ddl1a5rcz.png)
Explanation:
Explanation:-
step(i):-
Given function y =f(x)= x² - x + 1/4 ....(i)
Differentiating equation (i) with respective to 'x', we get
...(ii)
Equating Zero 2 x - 1 = 0
![2 x = 1](https://img.qammunity.org/2021/formulas/mathematics/college/tmd27hz2dhq42p6kjftvdgg9jco2xoytjz.png)
![x = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1kwnbk7q4emvcjmp0vlw6vem8ddl1a5rcz.png)
Step(ii):-
Again differentiating with respective to 'x', we get
![y^(ll) =(d^2 y)/(d x^2) = 2 (1) >0](https://img.qammunity.org/2021/formulas/mathematics/college/plipx4voe0h1dvu1m5uovbhf9ynqscas77.png)
f(x) has a minimum value at
![x = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1kwnbk7q4emvcjmp0vlw6vem8ddl1a5rcz.png)
Step(iii):-
y =f(x) = x² - x + 1/4
Put
![f( (1)/(2)) = ((1)/(2) )2-(1)/(2) +(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/h011e17cyogn5h1afcgrjrfrpu7mz38ra9.png)
![f((1)/(2) ) = (2)/(4) -(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/c67o6iqvsxotisww4q1akwimj7h2xpgmmv.png)
![f((1)/(2) ) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/cidamt9mmoaa57bam2kocb5poe0cc11wvd.png)
f(x) has a minimum value is zero at
![x = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1kwnbk7q4emvcjmp0vlw6vem8ddl1a5rcz.png)