Answer:
99% confidence interval of the true mean weight of the minivans
(3954.192 ,4345.808)
Explanation:
step(i):-
Given sample size 'n' = 40
mean of the sample x⁻ = 4150 pounds
Standard deviation of the Population 'σ' = 480 pounds
Critical value:-

step(ii):-
99% confidence interval of the true mean weight of the minivans


(4150 - 195.808 , 4150 + 195.808)
(3954.192 ,4345.808)
Conclusion:-
99% confidence interval of the true mean weight of the minivans
(3954.192 ,4345.808)