63.6k views
4 votes
Rearrange w= 3(2a + b) - 4 to make a the subject

User Dhobbs
by
3.6k points

1 Answer

3 votes

Answer:


\boxed{a = (w)/( 6) - (b)/(2) + (2)/(3) }

Explanation:


Solve \: for \: a: \\ </p><p> = > w=3(2a+b)-4 \\ \\ </p><p>w=3(2a+b)4 \: is \: equivalent \: to \: 3(2a+b)-4= w: \\ </p><p> = > 3(2a+b) - 4=w \\ \\ </p><p>Expand \: out \: terms \: of \: the \: left \: hand \: side: \\ = > (3 * 2a) + (3 * b) - 4 = w \\ </p><p> = > 6a+3b - 4=w \\ \\ </p><p>Subtract \: 3b - 4 \: from \: both \: sides: \\ = > 6a + 3b - 4 - (3b - 4)=w - (3b - 4) \\ = > 6a = w - 3b + 4 \\ \\ Divide \: both \: sides \: by \: 6: \\ = > \frac{ \cancel{6}a}{ \cancel{6}} = (w - 3b + 4)/(6) \\ = > a = (w)/(6) - (3b)/(6) + (4)/(6) \\ = > a = (w)/( 6) - (b)/(2) + (2)/(3)