8.9k views
3 votes
What is the value of b in the equation below? Give your answer as a fraction in its simplest form.

3√C * b√C * 4√C = C^11/12

User Babbitt
by
6.7k points

1 Answer

5 votes

Answer:


\frac{1}{12 {c}^{ (7)/(18) } }

Explanation:


3 √(c) \astb √(c) \ast \: 4 √(c) = {c}^{ (11)/(12) } </p><p></p><p>\\ \\ </p><p></p><p>3.b.4 √(c * c * c) = {c}^{ (11)/(12) } \\ \\ </p><p></p><p>12b \sqrt{ {c}^(3) } = {c}^{ (11)/(12) } \\ \\ </p><p></p><p>12b * {c}^{3 * (1)/(2) } = {c}^{ (11)/(12) } \\ \\ </p><p></p><p>12b * {c}^{(3)/(2) } = {c}^{ (11)/(12) } \\ \\</p><p></p><p> b = \frac{{c}^{ (11)/(12) }}{12{c}^{ (3)/(2) }} \\ \\ </p><p></p><p>b = \frac {c^{(11)/(12)-(3)/(2)}}{12}\\\\</p><p></p><p> b = \frac{{c}^{ (11 - 18)/(12) }}{12}} \\ \\ </p><p></p><p>b = \frac{{c}^{ ( - 7)/(12) }}{12} \\ \\</p><p></p><p> b = \frac{1}{12 {c}^{ (7)/(18) } }

User Shayonj
by
7.8k points