35.3k views
0 votes
Summarize the flow of carbon, oxygen ,water, nitrogen, and phosphorus through an ecosystem. ( Minimum of three paragraphs please)

User Bronson
by
5.5k points

1 Answer

2 votes

Answer:

Water is the basis of all living processes. More than half of the human body is made up of water, while human cells are more than 70 percent water. Thus, most land animals need a supply of fresh water to survive. However, when examining the stores of water on earth, 97.5 percent of it is non-potable salt water. Of the remaining water, 99 percent is locked underground as water or as ice. Thus, less than 1 percent of fresh water is easily accessible from lakes and rivers. Many living things, such as plants, animals, and fungi, are dependent on the small amount of fresh surface water supply, a lack of which can have massive effects on ecosystem dynamics. Humans, of course, have developed technologies to increase water availability, such as digging wells to harvest groundwater, storing rainwater, and using desalination to obtain drinkable water from the ocean. Although this pursuit of drinkable water has been ongoing throughout human history, the supply of fresh water is still a major issue in modern times.

Carbon, the second most abundant element in living organisms, is present in all organic molecules. Its role in the structure of macromolecules is of primary importance to living organisms. Carbon compounds contain especially- high forms of energy, which humans use as fuel. Since the 1800s (the beginning of the Industrial Revolution), the number of countries using massive amounts of fossil fuels increased, which raised the levels of carbon dioxide in the atmosphere. This increase in carbon dioxide has been associated with climate change and other disturbances of the earth’s ecosystems. It is a major environmental concern worldwide.

The carbon cycle is most easily studied as two interconnected sub-cycles: one dealing with rapid carbon exchange among living organisms and the other dealing with the long-term cycling of carbon through geologic processes.

Getting nitrogen into the living world is difficult. Plants and phytoplankton are not equipped to incorporate nitrogen from the atmosphere (which exists as tightly-bonded, triple-covalent N2), even though this molecule comprises approximately 78 percent of the atmosphere. Nitrogen enters the living world via free-living and symbiotic bacteria, which incorporate nitrogen into their macromolecules through nitrogen fixation (conversion of N2). Cyanobacteria live in most aquatic ecosystems where sunlight is present; they play a key role in nitrogen fixation. Cyanobacteria are able to use inorganic sources of nitrogen to “fix” nitrogen. Rhizobium bacteria live symbiotically in the root nodules of legumes (such as peas, beans, and peanuts), providing them with the organic nitrogen they need. Free-living bacteria, such as Azotobacter, are also important nitrogen fixers.

Phosphorus is an essential nutrient for living processes. It is a major component of nucleic acid, both DNA and RNA; of phospholipids, the major component of cell membranes; and, as calcium phosphate, makes up the supportive components of our bones. Phosphorus is often the limiting nutrient (necessary for growth) in aquatic ecosystems.

Phosphorus occurs in nature as the phosphate ion (PO43−). In addition to phosphate runoff as a result of human activity, natural surface runoff occurs when it is leached from phosphate-containing rock by weathering, thus sending phosphates into rivers, lakes, and the ocean. This rock has its origins in the ocean. Phosphate-containing ocean sediments form primarily from the bodies of ocean organisms and from their excretions. However, in remote regions, volcanic ash, aerosols, and mineral dust may also be significant phosphate sources. This sediment then is moved to land over geologic time by the uplifting of areas of the earth’s surface.

Step-by-step explanation:

User Nick Wills
by
4.9k points