17.9k views
4 votes
Find the values of e, a, b, and c for r = 24/(4 + 2sin theta)

User Bugraoral
by
5.0k points

2 Answers

4 votes

Answer:

C on Edgen

Explanation:

User Ryan De Kleer
by
5.5k points
4 votes

Answer:

Explanation:

r=24/(4+2sin θ)

4r+2r sin θ=24

divide by 2

2r+r sin θ=12

2√(x²+y²)+y=12

2√(x²+y²)=12-y

squaring

4(x²+y²)=144-24y+y²

4x²+3y²+24y=144

4x²+3(y²+8y+16-16)=144

4x²+3(y+4)²-48=144

4x²+3(y+4)²=144+48

4x²+3(y+4)²=192

divide by 192


(x^2)/(48)+((y+4)^2)/(64)=1

which is an ellipse with centre(0,-4) major axis on y-axis.


a^2=64\\a=8\\major axis=2*8=16\\b^2=48\\b=4√(3)\\minor ~axis=2*4 √(3)=8 √(3)\\b^2=a^2(1-e^2)\\48=64(1-e^2)\\1-e^2=48/64=3/4\\e^2=1-3/4=1/4\\e=1/2\\c^2=a^2-b^2\\c^2=64-48=16\\c=4

User Kyrylo Semenko
by
5.9k points