Answer:
Explanation:
r=24/(4+2sin θ)
4r+2r sin θ=24
divide by 2
2r+r sin θ=12
2√(x²+y²)+y=12
2√(x²+y²)=12-y
squaring
4(x²+y²)=144-24y+y²
4x²+3y²+24y=144
4x²+3(y²+8y+16-16)=144
4x²+3(y+4)²-48=144
4x²+3(y+4)²=144+48
4x²+3(y+4)²=192
divide by 192
![(x^2)/(48)+((y+4)^2)/(64)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fy2u1y6w9qk25hybzeddxohe9ygt4823ls.png)
which is an ellipse with centre(0,-4) major axis on y-axis.
![a^2=64\\a=8\\major axis=2*8=16\\b^2=48\\b=4√(3)\\minor ~axis=2*4 √(3)=8 √(3)\\b^2=a^2(1-e^2)\\48=64(1-e^2)\\1-e^2=48/64=3/4\\e^2=1-3/4=1/4\\e=1/2\\c^2=a^2-b^2\\c^2=64-48=16\\c=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/88kg8pj97tjf9dsontz4uum6647gasxsqq.png)