Answer:
Option D. 82.8°
Explanation:
From the figure attached,
By using Cosine rule in the given triangle ABC,
AC² = AB² + BC ² - 2(AB)(BC)cosB
(12)² = (8)² + (10)² - 2(8)(10)cosB
144 = 64 + 100 - 160.(cosB)
144 = 164 - 160.(cosB)
160.(cosB) = 164 - 144
cosB =
![(20)/(160)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cfsgp8g853849cbbrw1cldxvdb83fg7mmc.png)
cosB =
![(1)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hcxhwcun3tdhxxrdgcla5lb39my4jlljjt.png)
B =
![\text{cos}^(-1)(0.125)](https://img.qammunity.org/2021/formulas/mathematics/high-school/stf51p753f363ustgsejsi0oe0j5xlfo2y.png)
B = 82.82°
B ≈ 82.8°
Therefore, Option D. will be the answer.