Answer:
14 cm (rounded to nearest whole number)
Explanation:
Law of Sine:
![\displaystyle \large{(\sin A)/(a) = (\sin B)/(b) = (\sin C)/(c) = 2R}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d03os5jsbbskixiz61loy00yv4c3dwdvqy.png)
- a,b,c are side lengths.
- R is radius so 2R is diameter.
- A,B,C are angles.
Given angles are:
Definition of Euclidean Triangle:
- Sum of three interior angles equals 180°
Find another angle:
- 40°+46°+B = 180°
- 86+B = 180
- B = 180-86
- B = 94°
So another angle is 94°.
To find:
Determine:
- A = 46°
- a = x cm
- B = 94°
- b = 20 cm
Therefore:
![\displaystyle \large{(\sin 46^(\circ))/(x) = (\sin 94^(\circ))/(20)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8p17wydee162t9aly0jwh5ix86zorgp67b.png)
Multiply both sides by 20x:
![\displaystyle \large{(\sin 46^(\circ))/(x) \cdot 20x = (\sin 94^(\circ))/(20) \cdot 20x}\\\displaystyle \large{20\sin 46^(\circ)= x\sin 94^(\circ)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9pz8jan3g3qhcy24jifi3fb88vuonyg879.png)
Divide both sides by
:
![\displaystyle \large{(20\sin 46^(\circ))/(\sin 94^(\circ)) = (x\sin 94^(\circ))/(\sin 94^(\circ))}\\\displaystyle \large{(20\sin 46^(\circ))/(\sin 94^(\circ)) = x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjh8yxzj51e2zecgxo0nmfl1wnajfpj0rz.png)
Evaluate the expression, hence:
![\displaystyle \large{x = 14.42...}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ehtr1idzw8hrbxkp3q2oek4hb1v3o43ihq.png)
Round to nearest whole number:
![\displaystyle \large{x = 14}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mgzskcorj95gpw57j57lwtkzacwhgow1x2.png)
Therefore, the value of x is 14 cm.