197k views
3 votes
How many 4-digit multiples of 21 and 15 are there and 4-digit multiples of either 21 or 15 are there?

User EinsteinK
by
7.3k points

1 Answer

6 votes

Answer:

943

Explanation:

21| 1000

| ----------

47 | 13

21-13=8

1000+8=1008

21|9999

|---------

476|3

9999-3=9996

1008,1029,...,9996

let n be number of terms

a=1008,d=21,l=9996

9996=1008+(n-1)21

9996-1008=(n-1)21

8988=(n-1)21

n-1=8988/21

n-1=428

n=428+1=429

again 15|1000

|---------

66|10

15-10=5

1000+5=1005

15|9999

| ---------

666|9

9999-9=9990

1005,1020,...,9990

a=1005,d=15,l=9990

let n be number of terms.

9990=1005+(n-1)15

9990-1005=(n-1)15

8985=(n-1)15

n-1=8985/15

n-1=599

n=599+1=600

21=3×7

15=3×5

L.C.M.=3×5×7=105

105)1000(9

-945

____

55

105-55=50

1000+50=1050

105)9999(

-945

---------

549

- 525

-------

24

-------

9999-24=9975

1050,1155,...,9975

let n be number of terms.

d=105

l=a+(n-1)d

9975=1050+(n-1)105

9975-1050=(n-1)105

8025=(n-1)105

n-1=8925/105

n-1=85

n=85+1=86

so there are 86 multiples of 21 and 15

(A∪B)=A+B-(A∩B)

multiples of 21 or 15=429+600-86=1029-86=943

User Filippo Vicari
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories