Answer:
(i) The inductance of the inductor is = 43.43 mH (ii) the impedance of the circuit is = 16∠58.61° Ω (iii) the phase difference for current and the voltage applied is Q = 58.61°
Step-by-step explanation:
Solution
Given that:
I= 5 A
V = 125V
Resistance R= Not known yet
Thus
To find the resistance we have the following formula which is shown below:
R = V/I
=125/15
R =8.333Ω
Now,
Voltage = 240
Frequency = 50Hz
Current (I) remain at = 15A
Z= not known (impedance)
so,
To find the impedance we have the formula which is shown below:
Z = V/I =240/15
Z= 16Ω⇒ Z = R + jXL
Z = 8.333 + jXL = 16
Thus
√8.333² + XL² = 16²
8.333² + XL² = 16²
XL² = 186.561
XL = 13.658Ω
Now
We find the inductance of the Inductor and the impedance of the circuit.
(i) In solving for the inductance of the inductor, a formula is applied here, which is shown below:
L = XL/w
=13.658/ 2π * 50
=13.658/314.15 = 0.043 = 43.43 mH
Note: w= 2πf
(ii) For the impedance of the circuit we have the following:
z = 8.333 + j 13.658
z = 16∠58.61° Ω
(iii) The next step is to find the phase difference between the applied voltage and current.
Q = this is the voltage across the inductor in a series of resonant circuit.
Q can also be called the applied voltage
Thus,
Q is described as an Impedance angle
Therefore, Q = 58.81°