Answer:
![E(100 Y^2) =100 E(Y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/nzgsli1los26vjian27telh7ejvpvnwa2z.png)
And we have that :
![E(Y^2) =\sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/i3tng4tbdnjypehq59mkdzdreas9o2xrd0.png)
And replacing we got:
![E(Y^2) =0^2 *0.6 + 1^2 *0.25 +2^2*0.10 +3^2 *0.05 = 1.1](https://img.qammunity.org/2021/formulas/mathematics/college/mbpgoohvpjxy396z7drvo6nh6f2yv8xthn.png)
And finally we have:
![E(100 Y^2) =100 *1.1 = 110](https://img.qammunity.org/2021/formulas/mathematics/college/svathj56xkrvkf5yw0ryym5qrodncggzui.png)
Explanation:
For this case we have the following probability masss function given:
Y 0 1 2 3
p(Y) 0.6 0.25 0.10 0.05
And we can define the surcharge with this expression
![100Y^2](https://img.qammunity.org/2021/formulas/mathematics/college/3od5qcxcriw74k6nh9cwxc2dvy39avwpu4.png)
We want to find the expected value for the last expression and we can do it on this way:
![E(100 Y^2) =100 E(Y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/nzgsli1los26vjian27telh7ejvpvnwa2z.png)
And we have that :
![E(Y^2) =\sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/i3tng4tbdnjypehq59mkdzdreas9o2xrd0.png)
And replacing we got:
![E(Y^2) =0^2 *0.6 + 1^2 *0.25 +2^2*0.10 +3^2 *0.05 = 1.1](https://img.qammunity.org/2021/formulas/mathematics/college/mbpgoohvpjxy396z7drvo6nh6f2yv8xthn.png)
And finally we have:
![E(100 Y^2) =100 *1.1 = 110](https://img.qammunity.org/2021/formulas/mathematics/college/svathj56xkrvkf5yw0ryym5qrodncggzui.png)