Due to the symmetry of the paraboloid about the z-axis, you can treat this is a surface of revolution. Consider the curve
, with
, and revolve it about the y-axis. The area of the resulting surface is then
![\displaystyle2\pi\int_1^2x√(1+(y')^2)\,\mathrm dx=2\pi\int_1^2x√(1+4x^2)\,\mathrm dx=\frac{(17^(3/2)-5^(3/2))\pi}6](https://img.qammunity.org/2021/formulas/mathematics/college/hysckuxjd8rd3jk5g89ruxjzyj631nbxwy.png)
But perhaps you'd like the surface integral treatment. Parameterize the surface by
![\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k](https://img.qammunity.org/2021/formulas/mathematics/college/5h5taucnod7ct0x0ab06692nq0r8fehqc5.png)
with
and
, where the third component follows from
![z=x^2+y^2=(u\cos v)^2+(u\sin v)^2=u^2](https://img.qammunity.org/2021/formulas/mathematics/college/q59hy180mvkfldhu0cboy8sv88reeybt3n.png)
Take the normal vector to the surface to be
![(\partial\vec s)/(\partial u)*(\partial\vec s)/(\partial u)=-2u^2\cos v\,\vec\imath-2u^2\sin v\,\vec\jmath+u\,\vec k](https://img.qammunity.org/2021/formulas/mathematics/college/dajg3jbf9kq8wadm47e0msadsep5xo9dim.png)
The precise order of the partial derivatives doesn't matter, because we're ultimately interested in the magnitude of the cross product:
![\left\|(\partial\vec s)/(\partial u)*(\partial\vec s)/(\partial v)\right\|=u√(1+4u^2)](https://img.qammunity.org/2021/formulas/mathematics/college/xeqc55dmd58x71swo77rv96p18h4ijbyll.png)
Then the area of the surface is
![\displaystyle\int_0^(2\pi)\int_1^2\left\|(\partial\vec s)/(\partial u)*(\partial\vec s)/(\partial v)\right\|\,\mathrm du\,\mathrm dv=\int_0^(2\pi)\int_1^2u√(1+4u^2)\,\mathrm du\,\mathrm dv](https://img.qammunity.org/2021/formulas/mathematics/college/b37sfrr5m5p0i6qjuimth5vpaf2utyhzw6.png)
which reduces to the integral used in the surface-of-revolution setup.