228k views
0 votes
A piston–cylinder device contains 0.85 kg of refrigerant- 134a at 2108C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 158C. Determine (a) the final pressure, (b) the change in the volume of the cylinder, and (c) the change in the enthalpy of the refrigerant-134a.

User Moohkooh
by
4.0k points

1 Answer

3 votes

Question:

A piston–cylinder device contains 0.85 kg of refrigerant- 134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Determine (a) the final pressure, (b) the change in the volume of the cylinder, and (c) the change in the enthalpy of the refrigerant-134a.

Answer:

a) 90.4 kPa

b) 0.0205 m³

c) 17.4 kJ/kg

Step-by-step explanation:

Given:

Mass, m = 0.85 kg

a) The final pressure here is equal to the initial pressure. Let's use the formula:


P_2 = P_1 = P_a_t_m + (mg)/(\pi D^2 / 4)


= 88*10^3 + (12kg * 9.81)/(\pi (0.25)^2 / 4)

= 90398 Pa

≈ 90.4 KPa

Final pressure = 90.4 kPa

b) Change in volume of the cylinder:

To find the initial and final volume, let's use the values from the A-13 table for refrigerant-134a, at initial values of 90.4 kPa and -10°C and final values of 90.4 kPa and 15°C

v1 = 0.2302m³/kg

h1 = 247.76 kJ/kg

v2 = 0.2544 m³/kg

h2 = 268.2 kJ/kg

Change in volume is calculated as:

Δv = m(v2 - v1)

Δv = 0.85(0.2544 - 0.2302)

= 0.0205 m³

Change in volume = 0.0205 m³

c) Change in enthalpy

Let's use the formula:

Δh = m(h2 - h1)

= 0.85(268.2 - 247.76)

= 17.4 kJ/kg

Change in enthalpy = 17.4 kJ/kg

User Muzzamil
by
4.3k points