Answer:
Part a
For this case n = 4. If we use the future value formula we got:
![A= 2500 (1+ (0.0675)/(4))^(4*10)= 4882.506](https://img.qammunity.org/2021/formulas/mathematics/college/2dhv5e3fvggnp6iwjyg96ovmmagd3f3lsl.png)
Part b
For this case n = 365. If we use the future value formula we got:
![A= 2500 (1+ (0.0675)/(365))^(365*10)= 4909.776](https://img.qammunity.org/2021/formulas/mathematics/college/enjg24kpftqvm3irjc2uw2i9epahoopuw2.png)
Explanation:
We can use the future vaue formula for compound interest given by:
![A= P(1+ (r)/(n))^(nt)](https://img.qammunity.org/2021/formulas/mathematics/college/jukpflcovw3skqotut8c05d8ww0qy60zc1.png)
Where P represent the present value, r=0.0675 , n is the number of times that the interest is compounded in a year and t the number of years.
Part a
For this case n = 4. If we use the future value formula we got:
![A= 2500 (1+ (0.0675)/(4))^(4*10)= 4882.506](https://img.qammunity.org/2021/formulas/mathematics/college/2dhv5e3fvggnp6iwjyg96ovmmagd3f3lsl.png)
Part b
For this case n = 365. If we use the future value formula we got:
![A= 2500 (1+ (0.0675)/(365))^(365*10)= 4909.776](https://img.qammunity.org/2021/formulas/mathematics/college/enjg24kpftqvm3irjc2uw2i9epahoopuw2.png)