Answer:
V = 0.0283 m³ = 28300 cm³
T₂ = 1200 K
Step-by-step explanation:
The volume of the gas can be determined by using General Gas Equation:
PV = nRT
where,
P = Pressure of Gas = (72 cm of Hg)(1333.2239 Pa/cm of Hg) = 95992.12 Pa
V = Volume of Gas = ?
n = no. of moles = mass/molar mass = (35 g)/(32 g/mol) = 1.09 mol
R = General Gas Constant = 8.314 J/ mol.k
T = Temperature of Gas = 27°C + 273 = 300 k
Therefore,
(95992.12 Pa)(V) = (1.09 mol)(8.314 J/mol.k)(300 k)
V = 2718.678 J/95992.12 Pa
V = 0.0283 m³ = 28300 cm³
The Kinetic Energy of gas molecule is given as:
K.E = (3/2)(KT)
Also,
K.E = (1/2)(mv²)
Comparing both equations, we get:
(3/2)(KT) = (1/2)(mv²)
v² = 3KT/m
v = √(3KT/m)
where,
v = r.m.s velocity
K = Boltzamn Constant
T = Absolute Temperature
m = mass of gas molecule
At T₁ = 300 K, v = v₁
v₁ = √(3K*300/m)
v₁ = √(900 K/m)
Now, for v₂ = 2v₁ (double r.m.s velocity), T₂ = ?
v₂ = 2v₁ = √(3KT₂/m)
using value of v₁:
2√(900 K/m) = √(3KT₂/m)
4(900) = 3 T₂
T₂ = 1200 K